1 A
$$P^2 = 4$$
. $\frac{1}{4}PP = I$

$$\left(\frac{1}{4}P\right)P=I.$$

Therefore,

$$P^{-1}=\frac{1}{4}P.$$

2

B
$$RS = [5(0) + (3)(-1) + (1)(2)] = [-1]$$

3 **E** det
$$A = (9)(5) - (8)(-11) = 133$$

4 A The product of an
$$1 \times 3$$
 matrix by a 3×1 matrix will be a 1×1 matrix.

5 B
$$AX + B = C$$

 $AX = C - B$
 $X = A^{-1}C - B$
 $= \begin{bmatrix} 1 & -2 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} 3 & 5 \\ 2 & 2 \end{bmatrix}$
 $= \begin{bmatrix} -1 & 1 \\ 4 & 0 \end{bmatrix}$

C Since
$$PQR = \begin{bmatrix} 7 & 0 \\ 0 & 56 \end{bmatrix}$$
, there are **2** zero entries.

$$A \quad X^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}$$

$$= \frac{1}{3(-2) - (5)(-1)} \begin{bmatrix} -2 & -5 \\ 1 & 3 \end{bmatrix}$$

$$= \frac{1}{-1} \begin{bmatrix} -2 & -5 \\ 1 & 3 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 5 \\ -1 & -3 \end{bmatrix}$$

B
$$\det A = ad - bc = (4)(4) - (6)(2) = 4$$

$$\begin{array}{ll} \mathbf{D} & S^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \\ & = \frac{1}{5(2) - (7)(2)} \begin{bmatrix} 2 & -7 \\ -2 & 5 \end{bmatrix} \\ & = \frac{1}{4} \begin{bmatrix} -2 & 7 \\ 2 & -5 \end{bmatrix} \end{array}$$

10 D A reflection in the line
$$y=x$$
 is given by the rule $(x,y) o (y,x)$. Therefore, $(5,-2) o (-2,5)$.

11 C A reflection in the line
$$y=-x$$
 is given by the rule $(x,y) o (-y,-x)$. Therefore, $(2,-6) o (6,-2)$.

12 B The point
$$(5, -4)$$
 is translated to the point $(7, -7)$. Its distance to the line $y = 1$ is 8. Therefore, it will deflect to a point 8 units on the other side of the line $y = 1$. That is, to the point $(7, 9)$.

13 A We can think of this as a translation of
$$(a,b)$$
 to the line $x=m$ by translating the point by $m-a$ units in the x -direction, then a further $m-a$ units in the x -direction. The x -coordinate will then be

$$a+(m-a)+(m-a)=2m-a.$$

the y-coordinate is unchanged.

15 B The required transformation is

$$\left[egin{array}{c} x' \ y' \end{array}
ight] = \left[egin{array}{c} x+3 \ -(y+2) \end{array}
ight].$$

Therefore, x'=x+3 and y'=-y-2. Solving for x and y gives,

$$x = x' - 3$$
 and $y = -y' - 2$

so that $y=x^2$ becomes $-y'-2=(x'-3)^2.$ Solving for y' gives,

$$y' = -(x'-3)^2 - 2.$$

Deleting the dash symbols leaves $y=-(x-3)^2-2$, which corresponds to item B.

16 C The required transformation is

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} \frac{x}{3} \\ 2y \end{bmatrix}.$$

Therefore, $x'=rac{x}{3}$ and y'=2y. Solving for x and y gives,

$$x = 3x'$$
 and $y = \frac{y'}{2}$

so that $y=2^x$ becomes $\dfrac{y'}{2}=2^{3x'}.$ Solving for y' gives,

$$y'=2 imes 2^{3x'}$$
.

Deleting the dash symbols leaves $y = 2 \times 2^{3x}$.

17 D A reflection in the line x=2 is given by the rule

$$\begin{bmatrix} x' \\ y' \end{bmatrix} = \begin{bmatrix} 4-x \\ y \end{bmatrix}.$$

If we then perform the translation we obtain the transformation,

$$egin{bmatrix} x' \ y' \end{bmatrix} = egin{bmatrix} 4-x \ y \end{bmatrix} + egin{bmatrix} 2 \ 3 \end{bmatrix} = egin{bmatrix} 6-x \ y+3 \end{bmatrix}$$

18 D The matrix of the transformation is

$$B = \begin{bmatrix} 4 & 3 \\ 4 & 5 \end{bmatrix}$$
.

The inverse transformation will have matrix

$$\begin{split} B^{-1} &= \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix} \\ &= \frac{1}{4(4) - (5)(3)} \begin{bmatrix} 4 & -3 \\ -5 & 4 \end{bmatrix} \\ &= \begin{bmatrix} 4 & -3 \\ -5 & 4 \end{bmatrix}, \end{split}$$

which corresponds to item D

$$\begin{bmatrix} 0 & -1 \\ -2 & 1 \end{bmatrix} \begin{bmatrix} -1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & -1 \\ 2 & 1 \end{bmatrix}.$$

The first column corresponds to the image of (1,0) and the second to the image of (0,1). Therefore,

$$(1,0) \to (0,2) \text{ and } (0,1) \to (-1,1).$$

Only item E contains both of these points.

20 D A rotation by 35° clockwise then 15° anticlockwise is a rotation by 20° clockwise. The has transformation matrix,

$$\begin{bmatrix} \cos(-20)^\circ & -\sin(-20)^\circ \\ \sin(-20)^\circ & \cos(-20)^\circ \end{bmatrix} = \begin{bmatrix} \cos 20^\circ & \sin 20^\circ \\ -\sin 20^\circ & \cos 20^\circ \end{bmatrix}$$

21 B An anticlockwise rotation by angle θ is given by the matrix,

$$\begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$

This cannot be a reflection because of the location of the negative entry.

22 B The area of the original square is 1. Therefore the image will have area,

$$egin{aligned} ext{area of image} &= |\det B| imes ext{original area} \ &= |2(5) - (3)(4)| imes 1 \ &= 2. \end{aligned}$$

23 B Since

$$|a| = \sqrt{3^2 + 4^2} = 5$$
,

the unit vector will be

$$\frac{\boldsymbol{a}}{|\boldsymbol{a}|} = \frac{1}{5}(3\boldsymbol{i} + 4\boldsymbol{j}).$$

24 D
$$\overrightarrow{AB} = \overrightarrow{OB} - \overrightarrow{OA}$$

= $(3i + 4j + k) - (2i - 4j + k)$
= $i + 8j$

25 B
$$a - b = (2i + 4j) - (3i - 2j)$$

= $-i + 6j$

26 A
$$|a| = \sqrt{2^2 + (-1)^2 + (4)^2} = \sqrt{21}$$

27 B
$$\overrightarrow{AD} = \overrightarrow{AB} + \overrightarrow{BO} + \overrightarrow{OC} + \overrightarrow{CD}$$

 $= \boldsymbol{c} + -\boldsymbol{b} + \boldsymbol{c} + -\boldsymbol{b}$
 $= 2\boldsymbol{c} - 2\boldsymbol{b}$
 $= 2(\boldsymbol{c} - \boldsymbol{b})$

28 D
$$2r - s = 2(2i - j + k) - (-i + j + 3k)$$

= $5i - 3j - k$

29 A

30 B Vectors $oldsymbol{u}$ and $oldsymbol{v}$ are parallel if

$$egin{aligned} oldsymbol{u} &= coldsymbol{v} \ oldsymbol{i} + aoldsymbol{j} - 5oldsymbol{k} = cboldsymbol{i} - 3coldsymbol{j} + 6coldsymbol{k} \end{aligned}$$

Equating coefficients gives $c=-rac{5}{6}$ and

$$a = -3c = -3 imes -rac{5}{6} = rac{5}{2}, \ b = 1 \div c = -rac{6}{5}.$$

31 C
$$x = sa + tb$$

 $i + 5j = 3si + 4sj + 2ti - tj$
 $i + 5j = (3s + 2t)i + (4s - t)j$

Therefore, 3s + 2t = 1 and 4s - t = 5. Solving these simultaneous equations gives,

$$s = 1, t = -1.$$

32 B
$$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OC} + \overrightarrow{CB}$$

 $= -\boldsymbol{a} + \boldsymbol{c} + \frac{1}{3}\boldsymbol{a}$
 $= \boldsymbol{c} - \frac{2}{3}\boldsymbol{a}$

33 B
$$c = \overrightarrow{OC}$$

 $= \overrightarrow{OB} + \overrightarrow{BA} + \overrightarrow{AC}$
 $= b + (a - b) + 2(a - b)$
 $= b + 3(a - b)$
 $= 3a - 2b$